
THE LECTURE 5

DATABASE MODIFICATIONS

DB MODIFICATIONS

 Modification = insert + delete + update.

Insertion of a Tuple
INSERT INTO relation VALUES (list of values).

 Inserts the tuple = list of values, associating values with attributes in the order
the attributes were declared.

 Forget the order? List the attributes as arguments of the relation.

Example
Likes(consumer, apple)

Insert the fact that Sally likes Bud.

INSERT INTO Likes(consumer, apple)

VALUES('Sally’, ‘Green');

INSERTION OF THE RESULT OF A QUERY

INSERT INTO relation (subquery).

Example

Frequents(consumer, shop)

CREATE TABLE PotBuddies(

name char(30)

);

INSERT INTO PotBuddies

(SELECT DISTINCT d2.consumer

FROM Frequents d1, Frequents d2

WHERE d1.consumer = 'Sally' AND

d2.consumer <> 'Sally' AND

d1.shop = d2.shop

);

DELETION

DELETE FROM relation WHERE condition.

 Deletes all tuples satisfying the condition from the named relation.

Example
Sally no longer likes Bud.

Likes(consumer, apple)

DELETE FROM Likes

WHERE consumer = 'Sally' AND

apple = ‘Green';

Example
Make the Likes relation empty.

DELETE FROM Likes;

EXAMPLE

 Delete all apples for which there is another apple by the same manufacturer.

Apples(name, manf)

DELETE FROM Apples p

WHERE EXISTS

(SELECT name

FROM Apples

WHERE manf = p.manf AND

name <> p.name

);

 Note alias for relation from which deletion occurs.

UPDATES

UPDATE relation SET list of assignments WHERE condition.

Example
Drinker Fred's phone number is 555-1212.

Consumers(name, addr, phone)

UPDATE Consumers

SET phone = '555-1212'

WHERE name = 'Fred';

Example
Make $4 the maximum price for apple.

 Updates many tuples at once.

Sells(shop, apple, price)

UPDATE Sells

SET price = 4.00

WHERE price > 4.00;

DEFINING A DATABASE SCHEMA

CREATE TABLE name (list of elements).

 Principal elements are attributes and their types, but key declarations and constraints also appear.

 Similar CREATE X commands for other schema elements X: views, indexes, assertions, triggers.

 “DROP X name” deletes the created element of kind X with that name.

Example
CREATE TABLE Sells (

shop CHAR(20),

name VARCHAR(20),

price REAL

);

DROP TABLE Sells;

TYPES

 INT or INTEGER.

 REAL or FLOAT.

 CHAR(n) = fixed length character string, padded with “pad characters.”

 VARCHAR(n) = variable-length strings up to n characters.

 Oracle uses VARCHAR2(n) as well. PostgreSQL uses VARCHAR and does not support VARCHAR2.

TYPES

 NUMERIC(precision, decimal) is a number with precision digits
with the decimal point decimal digits from the right.
NUMERIC(10,2) can store ±99,999,999.99

 DATE. SQL form is DATE 'yyyy-mm-dd'

• PostgreSQL follows the standard. Oracle uses a different format.

 TIME. Form is TIME 'hh:mm:ss[.ss…]' in SQL.

 DATETIME or TIMESTAMP. Form is TIMESTAMP 'yyyy-
mm-dd hh:mm:ss[.ss…]' in SQL.

 INTERVAL. Form is INTERVAL 'n period' in PostgreSQL.
Period is month, days, year, etc.

DECLARING KEYS

Use PRIMARY KEY or UNIQUE.

 But only one primary key, many UNIQUEs allowed.

 SQL permits implementations to create an index (data structure to
speed access given a key value) in response to PRIMARY KEY only.

 But PostgreSQL and Oracle create indexes for both.

 SQL does not allow nulls in primary key, but allows them in “unique”
columns (which may have two or more nulls, but not repeated non-null
values).

DECLARING KEYS

Two places to declare:

 After an attribute’s type, if the attribute is a key by itself.

 As a separate element.

 Essential if key is >1 attribute.

EXAMPLE

CREATE TABLE Sells (

shop CHAR(20),

apple VARCHAR(20),

price REAL,

PRIMARY KEY(shop,apple)

);

EXAMPLE

CREATE TABLE Sells (

shop CHAR(20),

apple VARCHAR(20),

price REAL,

UNIQUE(shop,apple)

);

is different than:

CREATE TABLE Sells (

shop CHAR(20) UNIQUE,

apple VARCHAR(20) UNIQUE,

price REAL

);

OTHER PROPERTIES YOU CAN GIVE TO ATTRIBUTES

 NOT NULL = every tuple must have a real value for this attribute.

 DEFAULT value = a value to use whenever no other value of this
attribute is known.

Example
CREATE TABLE Consumers (

name CHAR(30) PRIMARY KEY,

addr CHAR(50)

DEFAULT '123 Sesame St',

phone CHAR(16)

);

OTHER PROPERTIES YOU CAN GIVE TO ATTRIBUTES

INSERT INTO Consumers(name)

VALUES('Sally')

results in the following tuple:

name addr phone

Sally 123 Sesame St. NULL

 Primary key is by default not NULL.

 This insert is legal.

 OK to list a subset of the attributes and values for only this subset.

 But if we had declared

phone CHAR(16) NOT NULL

then the insertion could not be made.

INTERESTING DEFAULTS

 DEFAULT CURRENT_TIMESTAMP

 SEQUENCE

CREATE SEQUENCE customer_seq;

CREATE TABLE Customer (

customerID INTEGER

DEFAULT nextval('customer_seq'),

name VARCHAR(30)

);

CHANGING COLUMNS

Add an attribute of relation R with

ALTER TABLE R ADD <column declaration>;

Example
ALTER TABLE Shops ADD phone CHAR(16)

DEFAULT 'unlisted';

 Columns may also be dropped.

ALTER TABLE Shops DROP license;

VIEWS

An expression that describes

a table without creating it.

 View definition form is:

CREATE VIEW <name> AS <query>;

EXAMPLE

The view CanConsume is the set of consumer-apple pairs such that the consumer frequents at least one apple that serves
the apple.

CREATE VIEW CanConsume AS

SELECT consumer, apple

FROM Frequents, Sells

WHERE Frequents.apple = Sells.apple;

Querying Views
Treat the view as if it were a materialized relation.

Example
SELECT apple

FROM CanConsume

WHERE consumer = ‘Sally’;

