
THE LECTURE 5

DATABASE MODIFICATIONS

DB MODIFICATIONS

 Modification = insert + delete + update.

Insertion of a Tuple
INSERT INTO relation VALUES (list of values).

 Inserts the tuple = list of values, associating values with attributes in the order
the attributes were declared.

 Forget the order? List the attributes as arguments of the relation.

Example
Likes(consumer, apple)

Insert the fact that Sally likes Bud.

INSERT INTO Likes(consumer, apple)

VALUES('Sally’, ‘Green');

INSERTION OF THE RESULT OF A QUERY

INSERT INTO relation (subquery).

Example

Frequents(consumer, shop)

CREATE TABLE PotBuddies(

name char(30)

);

INSERT INTO PotBuddies

(SELECT DISTINCT d2.consumer

FROM Frequents d1, Frequents d2

WHERE d1.consumer = 'Sally' AND

d2.consumer <> 'Sally' AND

d1.shop = d2.shop

);

DELETION

DELETE FROM relation WHERE condition.

 Deletes all tuples satisfying the condition from the named relation.

Example
Sally no longer likes Bud.

Likes(consumer, apple)

DELETE FROM Likes

WHERE consumer = 'Sally' AND

apple = ‘Green';

Example
Make the Likes relation empty.

DELETE FROM Likes;

EXAMPLE

 Delete all apples for which there is another apple by the same manufacturer.

Apples(name, manf)

DELETE FROM Apples p

WHERE EXISTS

(SELECT name

FROM Apples

WHERE manf = p.manf AND

name <> p.name

);

 Note alias for relation from which deletion occurs.

UPDATES

UPDATE relation SET list of assignments WHERE condition.

Example
Drinker Fred's phone number is 555-1212.

Consumers(name, addr, phone)

UPDATE Consumers

SET phone = '555-1212'

WHERE name = 'Fred';

Example
Make $4 the maximum price for apple.

 Updates many tuples at once.

Sells(shop, apple, price)

UPDATE Sells

SET price = 4.00

WHERE price > 4.00;

DEFINING A DATABASE SCHEMA

CREATE TABLE name (list of elements).

 Principal elements are attributes and their types, but key declarations and constraints also appear.

 Similar CREATE X commands for other schema elements X: views, indexes, assertions, triggers.

 “DROP X name” deletes the created element of kind X with that name.

Example
CREATE TABLE Sells (

shop CHAR(20),

name VARCHAR(20),

price REAL

);

DROP TABLE Sells;

TYPES

 INT or INTEGER.

 REAL or FLOAT.

 CHAR(n) = fixed length character string, padded with “pad characters.”

 VARCHAR(n) = variable-length strings up to n characters.

 Oracle uses VARCHAR2(n) as well. PostgreSQL uses VARCHAR and does not support VARCHAR2.

TYPES

 NUMERIC(precision, decimal) is a number with precision digits
with the decimal point decimal digits from the right.
NUMERIC(10,2) can store ±99,999,999.99

 DATE. SQL form is DATE 'yyyy-mm-dd'

• PostgreSQL follows the standard. Oracle uses a different format.

 TIME. Form is TIME 'hh:mm:ss[.ss…]' in SQL.

 DATETIME or TIMESTAMP. Form is TIMESTAMP 'yyyy-
mm-dd hh:mm:ss[.ss…]' in SQL.

 INTERVAL. Form is INTERVAL 'n period' in PostgreSQL.
Period is month, days, year, etc.

DECLARING KEYS

Use PRIMARY KEY or UNIQUE.

 But only one primary key, many UNIQUEs allowed.

 SQL permits implementations to create an index (data structure to
speed access given a key value) in response to PRIMARY KEY only.

 But PostgreSQL and Oracle create indexes for both.

 SQL does not allow nulls in primary key, but allows them in “unique”
columns (which may have two or more nulls, but not repeated non-null
values).

DECLARING KEYS

Two places to declare:

 After an attribute’s type, if the attribute is a key by itself.

 As a separate element.

 Essential if key is >1 attribute.

EXAMPLE

CREATE TABLE Sells (

shop CHAR(20),

apple VARCHAR(20),

price REAL,

PRIMARY KEY(shop,apple)

);

EXAMPLE

CREATE TABLE Sells (

shop CHAR(20),

apple VARCHAR(20),

price REAL,

UNIQUE(shop,apple)

);

is different than:

CREATE TABLE Sells (

shop CHAR(20) UNIQUE,

apple VARCHAR(20) UNIQUE,

price REAL

);

OTHER PROPERTIES YOU CAN GIVE TO ATTRIBUTES

 NOT NULL = every tuple must have a real value for this attribute.

 DEFAULT value = a value to use whenever no other value of this
attribute is known.

Example
CREATE TABLE Consumers (

name CHAR(30) PRIMARY KEY,

addr CHAR(50)

DEFAULT '123 Sesame St',

phone CHAR(16)

);

OTHER PROPERTIES YOU CAN GIVE TO ATTRIBUTES

INSERT INTO Consumers(name)

VALUES('Sally')

results in the following tuple:

name addr phone

Sally 123 Sesame St. NULL

 Primary key is by default not NULL.

 This insert is legal.

 OK to list a subset of the attributes and values for only this subset.

 But if we had declared

phone CHAR(16) NOT NULL

then the insertion could not be made.

INTERESTING DEFAULTS

 DEFAULT CURRENT_TIMESTAMP

 SEQUENCE

CREATE SEQUENCE customer_seq;

CREATE TABLE Customer (

customerID INTEGER

DEFAULT nextval('customer_seq'),

name VARCHAR(30)

);

CHANGING COLUMNS

Add an attribute of relation R with

ALTER TABLE R ADD <column declaration>;

Example
ALTER TABLE Shops ADD phone CHAR(16)

DEFAULT 'unlisted';

 Columns may also be dropped.

ALTER TABLE Shops DROP license;

VIEWS

An expression that describes

a table without creating it.

 View definition form is:

CREATE VIEW <name> AS <query>;

EXAMPLE

The view CanConsume is the set of consumer-apple pairs such that the consumer frequents at least one apple that serves
the apple.

CREATE VIEW CanConsume AS

SELECT consumer, apple

FROM Frequents, Sells

WHERE Frequents.apple = Sells.apple;

Querying Views
Treat the view as if it were a materialized relation.

Example
SELECT apple

FROM CanConsume

WHERE consumer = ‘Sally’;

